REPORT DOCUMENTATION PAGE A

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
31-03-2012 Final Report Mar 2009 — Dec 2011
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
(YIP-09) SECURE HETEROGENOUS MULTICORE PLATFORM THROUGH 5b. GRANT NUMBER
DIVERSITY AND REDUNDANCY FA9550-09-1-0131

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Suh, Gookwon, E. 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Cornell University

Ithaca, NY 14853 OSP 57093

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
AFOSR

Air Force Office of Scientific Research

875 North Randolph Street 11. SPONSOR/MONITOR’S REPORT

Suite 325, Rm 3112 NUMBER(S)

Arlington, VA 22203 AFRL-OSR-VA-TR-2012-0988

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution A: Approved for Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This project aimed to significantly enhance the security of future multi-core platforms
against software exploits by exploiting abundant parallel computing resources. In this
context, the project developed hardware-assisted run-time monitoring techniques to detect
attacks exploiting memory safety errors or emerging parallel program errors. The project also
found that security and reliability techniques could be combined, in particular in the
context of off-chip memory protection, to provide both properties with the cost of one. In
addition to developing efficient and effective run-time protection techniques against
software exploits, this project also resulted in multiple contributions in the general area
of building more secure hardware foundations, including a secure hardware design process,
hybrid memory with an application to fast recovery, hardware device signatures, and true
random number generation.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Dr. Robert Herklotz
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area
. code)
U U U U 25 703-696-6565

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

mason
Typewritten Text
AFRL-OSR-VA-TR-2012-0988

mason
Typewritten Text

mason
Typewritten Text

mason
Typewritten Text
U		U		U			U		25

mason
Typewritten Text

mason
Typewritten Text

mason
Typewritten Text

mason
Typewritten Text
Dr. Robert Herklotz

mason
Typewritten Text
703-696-6565

Final Project Report

Title: Secure Heterogeneous Multicore Platform Through Diversity and Redundancy
PI: G. Edward Suh, Cornell University

Grant No.: FA9550-09-1-0131

Program Manager: Robert L. Herklotz

The goal of this project was to significantly enhance the software security of future computing
platforms by exploiting abundant parallel computing resources in many-core platforms. The ini-
tial investigation focused on protecting software through efficient diversification and replication.
Recent studies indicate that introduction of automatically generated diversity and redundancy can
provide transparent and comprehensive protection against a large class of software exploits. For
example, an attack that exploits memory safety bugs can be detected by running two replicas of a
program with different memory layouts. However, execution of diverse replicas on todays comput-
ing platforms incurs significant overheads in memory space, power consumption and bandwidth
consumption, which prevent the diverse replication from being widely deployed. This project
developed a heterogeneous multi-core architecture that can enable simultaneous execution of mul-
tiple replicas with minimal overheads be exploiting unnecessary redundancies, and demonstrated
a system that can detect both temporal and spatial memory errors with less than 20% overheads
compared to over 2x overheads today.

The project expanded this general approach of hardware-assisted run-time detection to concur-
rency attacks on parallel programs. A recent study showed that concurrency bugs, which allow an
unintended interleaving among threads, could be maliciously exploited to compromise a system
that runs multi-threaded applications. In this project, the PI’s team developed a new concurrency
bug detection scheme that can detect a broad range of bugs, including both data races and non-race
bugs. In particular, the study found that common non-race bugs in practice can be captured by
checking critical sections that are not controlled through explicit communications. Experiments
show that the proposed detection technique provides a significantly better coverage without in-
troducing more false positives, compared to traditional race detectors. The team also developed
hardware support for the new detection scheme and demonstrated that the check can be performed
with only a few percent overheads.

This investigation also revealed that there exists a significant synergy between run-time tech-
niques for security and reliability, which can be leveraged to reduce overheads when both are
required. As an example, today, a system needs two independent mechanisms in order to protect
the memory integrity from both physical attacks and random errors. Integrity verification schemes
detect malicious tampering of memory while error correcting codes (ECC) detect and correct ran-
dom errors. This project developed a unified off-chip memory integrity protection scheme that
provides both detection of malicious attacks for security and correction of random errors for relia-
bility at the same time by extending the integrity verification techniques. When both security and
reliability are required, this technique effectively removes the memory and bandwidth overheads
(12.5%) of typical ECC schemes.

In addition to developing efficient and effective run-time protection techniques against software
exploits, this project also resulted in multiple contributions in the general area of building more
secure hardware foundations. For example, the team worked with researchers at Intel to develop
a new security assessment process for early hardware designs, introduced a new SRAM-eDRAM

hybrid memory structures that can quickly checkpoint data, and found that Flash memory can be
leveraged as hardware-based security primitives.

Major Accomplishments:

Efficient Software Replication for Memory Safety: This project developed a heterogeneous
multi-core architecture, named Orthrus, which can protect a system against both temporal
and spatial memory exploits with efficient exeuction of two replicas with different memory
layouts. This work is detailed in the ASPLOS 2010 publication.

Run-Time Detection for Parallel Program Vulnerabilities: This project developed a new
parallel program bug detection technique along with efficient hardware support to enable the
scheme in production systems. This work is being prepared for publication. The manuscript
with technical details is attached at the end of this report.

Synergy between Security and Reliability: This project demonstrated that security and re-
liability techniques can be combined together to reduce the overheads without sacrificing
capabilities to deal with errors and attacks. This work is published in ISCA 2010.

Security Assessment Scheme for Architecture Features: One critical aspect of a secure hard-
ware design is the ability to measure a design’s security. The PI’s team worked with Intel
researchers to study a systematic way of measuring and categorizing a hardware feature’s
security concern at an early design stage. This work is detailed in the publication in TRUST
2011.

SRAM-eDRAM Hybrid Memory: This project partially supported a development of hybrid
memory structure that combines SRAM and eDRAM within each memory cell. This tech-
nology can enable instant checkpointing and roll-back of microprocessor state with a poten-
tial application to rapid recovery from attacks. The memroy design has initially been applied
to improve the energy consumption and area of GPGPUs (ISCA 2011 paper).

Signature and True Random Number Generation from Flash Memory: The PI’s team found
that unmodified commercial Flash memory can provide two important hardware security
functions: true random number generation and digital fingerprinting. These primitives pro-
vide strong hardware foundataions for secure systems. The details can be found in the pub-
lication in IEEE Security Privacy 2012.

Publications:

Ruirui Huang, Daniel Y. Deng, and G. Edward Suh, Orthrus: Efficient Software Integrity
Protection on Multi-Cores, Proceedings of the 15th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS 2010), March
2010.

Ruirui Huang, and G. Edward Suh, IVEC: Off-Chip Memory Integrity Protection for Both
Security and Reliability, Proceedings of the 37th International Symposium on Computer
Architecture (ISCA 2010), June 2010.

e Wing-kei Yu, Ruirui Huang, Sarah Xu, Sung-En Wang, Edwin Kan, and G. Edward Suh,
SRAM-DRAM Hybrid Memory with Applications to Efficient Register Files in Fine-Grained

Multi-Threading, Proceedings of the 38th International Symposium on Computer Architec-
ture (ISCA), June 2011.

e Ruirui Huang, David Grawrock, David C. Doughty, G. Edward Suh, Systematic Security
Assessment at an Early Processor Design Stage, Proceedings of the 4th International Con-
ference on Trust and Trustworthy Computing (TRUST), June 2011.

e Yinglei Wang, Wing-kei Yu, Shuo Wu, Greg Malysa, G. Edward Suh, and Edwin Kan, Flash
Memory for Ubiquitous Hardware Security Functions: True Random Number Generation
and Device Fingerprints, Proceedings of the IEEE Symposium on Security and Privacy, May
2012.

Supported Personnel:

Gookwon Edward Suh (PI)

Danny Y. Deng

Ruirui Huang

Daniel Lo

Yao Wang

Yinglei Wang

Run-Time Concurrency Bug Detection Through Uncontrolled
Memory Accesses

1 Introduction

As computing hardware moves to multi-core and many-core systems, future software needs to
be parallelized in order to benefit from the increasing computing resources. However, writing a
correct parallel program is notoriously difficult, partly because of non-determinism in concurrent
program executions. Because thread executions can be interleaved in many ways, a parallel pro-
gram may produce a non-deterministic outcome even for identical program inputs if threads are
not properly synchronized. Such a non-deterministic behavior, if not intentional, is often referred
to as a concurrency bug.

In this paper, we propose to extend the intuition behind the traditional data races to develop a
general scheme that can detect a broad range of concurrency bugs, both data races and non-race
bugs, without relying on application-specific knowledge. A data race refers to conflicting (same
location, at least one write) memory accesses from multiple threads that are not synchronized at
all. In essence, this lack of control by a programmer is commonly considered as a sign of a bug.
However, simply having a synchronization operation does not necessarily mean it is correct, and
recent studies show that many concurrency bugs do not fall into data races [10]. To detect non-race
bugs, we extend the general notion of uncontrolled memory accesses to conflicting accesses that
are protected by critical sections, and consider them as a potential bug if the critical sections do
not have an explicit communication between them.

This notion of uncontrolled memory accesses, which includes accesses from uncontrolled crit-
ical sections, provides a new condition for potential concurrency bugs. In practice, we found that
this new condition is more general than data races and can detect a broad range of concurrency bugs
without additional false positives. In our experiments, our detection scheme based on uncontrolled
memory accesses detected all 18 real-world concurrency bugs that we tested, including atomicity
violation, ordering violation, and multi-variable bugs, whereas the traditional data races could only
detect 12 out of 18. Moreover, experiments on Apache, MySQL, SPLASH?2, and PARSEC sug-
gest that this new scheme does not introduce more false positives compared to traditional data race
detection. The results indicate that mutual exclusion alone without additional communications, in
most cases, is not sufficient for programmers to truly coordinate conflicting memory accesses.

To realize detection based on uncontrolled accesses in practice, the paper presents an efficient
algorithm that can detect both data races and uncontrolled critical sections at run-time. The algo-
rithm is based on vector clocks [6, 27], which are often used for data race detection, with extensions
that consider more interleaving patterns to detect uncontrolled critical sections. While requiring
larger vector clocks for mutex and additional bookkeeping for critical sections, we found that the
additional meta-data is not a major concern because they are maintained only for a relatively small
number of objects. The new algorithm also has a computational complexity comparable to tradi-
tional vector clock algorithms.

While effective in accurately detecting uncontrolled accesses, due to their overheads, today’s
vector clock schemes are often limited to testing tools instead of continuous detection on deployed
systems. Unfortunately, because the size of vector clocks scale with the number of threads, efficient
and scalable hardware support is quite challenging. For example, a direct hardware implementation

[23] suffers from overheads of vector clocks for each cache block and a limited number of threads
that it can support. On the other hand, scalar clocks have been shown to noticeably reduce the bugs
detection coverage [22].

This paper proposes architectural optimizations that address challenges in supporting vector
clocks, and shows that hardware support can realize bug detection techniques based on vector
clocks with negligible performance overheads without noticeably sacrificing the detection capabil-
ity and scalability. The main optimization comes from the observation that only a small fraction
of memory locations are accessed by multiple threads within a relatively short period where most
concurrency bugs happen. As a result, we found that only storing meta-data for those shared lo-
cations can greatly reduce the overheads. Additionally, we also found that scalar timestamps can
replace vector clocks in common bookkeeping with almost no loss in detection capability as long
as vector clocks are maintained for critical ordering constraints. This idea is similar to a recent
software optimization (FastTrack) [7] and improves scalability by allowing hardware structures to
only keep scalar timestamps. Experimental results show that scalar timestamps and limited book-
keeping in hardware do not significantly impact the bug detection capability. Overall, the hardware
support only requires minor architecture changes along with a small amount of state - a 6-14KB
buffer per core and a 1-bit tag per data cache block.

The following summarizes the main contributions of this paper:

e A notion of uncontrolled critical sections: We introduce a new concurrency bug condition
that can serve as a general indication of non-race concurrency bugs. The condition can be
added to the traditional concept of data races to detect both data races and non-race bugs.

e Run-time detection algorithms: We show how vector clocks can be extended to efficiently
check both data races and uncontrolled critical sections at run-time.

e Efficient architecture support. We show that decoupling of detecting memory locations with
conflicting accesses and the rest of meta-data bookkeeping can significantly simplify hard-
ware support with minimal impacts on coverage.

The rest of the paper is organized as follows. Section 2 presents the idea of detecting con-
currency bugs based on uncontrolled accesses, which include non-race bugs. Then, Section 3 and
Section 4 describe how this idea can be realized as run-time detection algorithms and architec-
tural mechanisms, respectively. Section 5 evaluates both software and hardware implementations
in terms of their effectiveness and overheads. Section 6 discusses related work, and Section 7
concludes the paper.

2 Bug Detection through Uncontrolled Critical Sections

The proposed bug detection scheme uses the notion of uncontrolled critical sections and data races
to identify potential concurrency bugs. This section discusses assumptions and intuitions behind
this approach, and through examples shows how the approach can detect bugs beyond traditional
data races.

2.1 Assumptions

Our proposed approach shares a couple of assumptions that are common across many data race de-
tection schemes, namely shared memory programming model and identification of synchronization

5

operations.

This work considers the shared memory programming model. Except for creating a thread
and waiting for a termination, threads communicate through accesses to shared memory locations.
Therefore, ordering of shared memory accesses characterizes communications among threads. In
other words, a concurrency bug manifests as an unintended divergence in shared memory access
orders in multiple program runs.

To distinguish concurrency bugs from legitimate synchronization operations, which often use
races, we assume that synchronization operations can be explicitly identified. Programmers often
rely on a library such as Pthreads to implement synchronization operations. In such cases, synchro-
nization operations can be easily identified from the library calls. Our prototype implementation
detects synchronization in this way. If a programmer uses custom synchronization primitives, our
approach assumes that such primitives can be either marked explicitly by the programmer or auto-
matically identified. For example, previous studies show that primitives such as spinlocks can be
automatically detected [28, 26].

In addition to identifying synchronizations, our approach also distinguishes two different types
of synchronization primitives. Primitives such as barriers and spinlocks explicitly enforce a pre-
determined ordering among threads. Therefore, the outcome of these synchronization operations
are deterministic. In the discussion, we will refer to these primitives as ordering synchronization
operations. On the other hand, primitives such as mutex and semaphores restrict the number of
threads that can simultaneously execute a piece of code, often called a critical section, without en-
forcing a particular execution order. Thus, such critical sections can execute in a non-deterministic
order in each run. We will refer to such primitives as mutex synchronization.

2.2 Concurrency Bug Detection

Parallel programs typically allow multiple threads to execute concurrently with many possible
interleaving patterns. Normally, however, all interleaving patterns that are allowed by synchro-
nization operations should produce identical program outcomes. If not, a program can produce
different results for identical inputs. Informally, we consider concurrency bugs as mistakes in
synchronization that allow an unintended thread interleaving pattern, which results in inconsistent
program outcomes from run to run.

We note that programmers, in rare cases, may intentionally write code that produces non-
deterministic results. For example, certain program outcomes such as statistics counters may not
need to be precise and a programmer may choose to optimize performance by removing synchro-
nization operations. Fortunately, our experiments on a set of benchmarks and real-world programs
show that such non-deterministic outputs are rather infrequent. We assume that a programmer
with knowledge of high-level semantics will review and explicitly distinguish intentional non-
determinism from real bugs.

In theory, any concurrency bug can be detected if program outputs can be compared for all
possible thread interleaving patterns for all possible inputs, checking for a divergence in outputs
for identical inputs. Unfortunately, such exhaustive testing is infeasible in practice. Instead, our
approach checks for common bug patterns where a programmer does not properly control shared
memory accesses, which will lead to non-deterministic memory accesses and also possibly non-
deterministic program outputs. This approach avoids multiple program executions, but requires
a careful balance between false positives and negatives because non-determinism in memory ac-
cesses does not always result in a non-deterministic program output. In the following subsections,

6

Thread 1 Thread 2 and 3
1.1 data = compute(); 2.1 Lock (1);
1.2 Lock (I); 2.2 if (head!= tail) {
1.3 if (tail->next != head) { 2.3 deQueue(data, head);
1.4 enQueue(data, tail); 2.4 head= head->next;
1.5 tail = tail->next; } 2.5}
1.6 UnLock (/); 2.6 UnLock (I);

(b) A simple producer-consumer example.

Figure 1: A data race concurrency bug and a producer-consumer example

we first discuss a traditional bug condition, namely data races, and extend the intuition to a new
condition, named uncontrolled critical sections.

2.3 Data Races

A large class of concurrency bugs rise from missing synchronization operations. In such cases,
the bugs manifest as data races where two conflicting memory accesses execute without synchro-
nization. Here, we define conflicting accesses as ones from different threads to the same memory
location, which include at least one write. The data races imply that conflicting memory accesses
can be ordered in an arbitrary fashion, and often indicate non-determinism in a program output.

As an example, Figure 1(a) shows an atomicity violation bug in MySQL that falls into a data
race. In this example, none of the accesses to the shared pointer thd->proc_info is protected
by synchronization. As a result, these accesses can be freely reordered, and potentially resulting
in a fault if the pointer is set to be NULL by 2.7 between /.1 and /.2. To fix the bug, both 7./ and
1.2 need to be protected by a single critical section to ensure an atomic execution.

Figure 1(b) shows a simple producer-consumer example where non-deterministic memory ac-
cesses do not impact the output. In the example, one thread (Thread 1) produces data and places
them into a FIFO buffer so that other threads (Thread 2 and 3) can read them. The enqueue and
dequeue processes are performed atomically within critical sections. Note that an order in which
consumers read the FIFO does not change program outputs if both consumers perform identical
operations. Even though critical sections can be executed in an arbitrary order, they are not con-
sidered as data races because of locks.

2.4 Uncontrolled Critical Sections: Non-Race Bugs

Data race detection is effective for a broad range of concurrency bugs where conflicting memory
accesses are not controlled at all. However, data races cannot capture incorrect use of critical
sections. For example, Figure 2(a) shows an atomicity violation example from Mozilla [11]. In
this case, each memory access to the shared variable gCurrentScript is protected by a lock.
As aresult, there is no data race. However, the program may still crash when the thread interleaving
follows 1.3 - 2.2 - 1.9 because gCurrentScript will be NULL for /.9. As another example,
Figure 2(b) shows an ordering violation example from Mozilla. Again, there is no data race.
However, the program will hang if the thread interleaving follows 2.3 - /.4 because mWaiting
would be false at 2.3 and Thread 1 waits at /.5 for a notification that will never be sent.

In order to detect non-race bugs, we introduce a notion of uncontrolled critical sections (UCS),
namely two critical sections that contain conflicting accesses, yet with no explicit communication
between them. In the shared memory model, an explicit communication implies a read-after-write

7

Thread 1 Thread 2 Thread 1 Thread 2
1.1 voiril(Llo.adScript (nsSpt* aspt) { 21 Lock(lock);
i; Lt():C) seriot < . 2.2 mProcessing = FALSE;
1.45 urrt;r:t C(;Ipt = afpt, -~ 2.3 if (mWaiting)
.4 Launc 0§ (aspt); ‘o “ 2.4 ./ Notify(cond, lock);
1.5 UnLock (/); } 2.5.” Unlock(lock);
2.1 Lock (1); 1.1 Lock(lock); o
2.2 gCurrentScript = NULL; 1.2 mProcessing = TRUE; ,~/
2.3 UnLock (/); 1.3 while (mProcessing) {
wes . 4 ee :
1.7 void OnLoadComplete () { L7 1.4 mWaiting = TRUE; ,'l
/* call back function of i 1.5 Wait(cond, lock); >
% .
LaunchLoad */ e 1.6 mWaiting = FALSE;
1.8 Lock (/); A)
1.9 gCurrentScript->compile(); 1.7 Unlock(lock);
1.10 UnLock (1); } '
> -
Mozilla nsXULDocument.cpp Buggy Interleaving Mozilla TimeThread.cpp Buggy Interleaving
(a) Atomicity violation bug (KB11) [11]. (b) Ordering violation bug (KBS8) [30].

Figure 2: Atomicity violation and ordering violation bugs in Mozilla that cannot be detected from
data races.

(RAW) dependency between two critical sections; the later critical section reads from a mem-
ory location that is written by the earlier critical section. This condition is based on the intuition
that programmers still need to coordinate critical sections in order to produce deterministic out-
puts even when they allow an execution order to be determined dynamically. For example, in
the producer-consumer example (Figure 1(b)), a consumer needs to update the head pointer for a
FIFO so that other consumers do not process the same entry many times. Because there exist RAW
dependencies, the critical sections in the produce-consumer example are NOT considered uncon-
trolled. Therefore, uncontrolled critical sections do not incur a false positive in this case. In fact,
this notion of uncontrolled critical sections did not show any false positive even for experiments
on a broader range of benchmarks and real-world applications.

On the other hand, the uncontrolled critical sections can capture non-race concurrency bugs
where critical sections are not properly coordinated. As an example, consider the example in
Figure 2(a) when the program execution follows the sequence 1.3 - 2.2 - 1.9. Even though all
three accesses are protected by critical sections, the critical sections that include /.3 and 2.2 only
have a Write-After-Write (WAW) dependency and thus will be considered uncontrolled. Similarly,
consider the example in Figure 2(b) when the thread interleaving follows 2.3 - 1.4. In this case,
the critical sections in the two threads only have a WAR dependency. Therefore, both non-race
bugs can be detected with uncontrolled critical sections. We note that the ordering violation in
Figure 2(b) is not detected under the correct interleaving of /.4 - 2.3 because there exists a RAW
dependency.

3 Run-Time Detection Algorithms

Here, we discuss how run-time checks for data races and uncontrolled critical sections can be
realized as software algorithms. We first describe an optimized algorithm for data races, named
Race-0Opt, as a baseline and extend the algorithm to include uncontrolled critical sections, named
Race+UCS.

detect_shared(TID, Addr, Type, TimeStamp)
3. Check the most recent read
(a) If (Type == Read), skip Step 3.
(b) Read (PrevTID, PrevTimeStamp)
from read_table (Addr).
() If PrevTID # TID, call
check_reorder (TID, PrevTID, PrevTimeStamp).

1.Update the history for the memory location
(a) If (Type == Read),
read-table (Addr) = (TID, TimeStamp).
(b) Otherwise, write_table (Addr) = (TID, TimeStamp).

2. Check the most recent write
(a) Read (PrevTID, PrevTimeStamp) fromwrite_table (Addr).
(b) If PrevTID # TID,call check.reorder (TID, PrevIID, PrevTimeStamp).

Figure 3: An algorithm to detect conflicting memory accesses from different threads and initiate
checks.

3.1 Overview

At a high-level, our run-time detection algorithms extend the general approach of the data race
detection schemes that use scalar timestamps and vector clocks [27, 7]. More specifically, the
algorithm first detects conflicting memory accesses, i.e. read-after-write, write-after-read, and
write-after-write from two threads to the same memory location. Then, the algorithm determines if
the conflicting access pair indicates either data races or uncontrolled critical sections by checking
whether the accesses can be re-ordered while maintaining certain happens-before relationships [8].
For example, data races can be checked by maintaining the happens-before relationships among
all synchronization operations so that re-ordering is only possible when there is no synchroniza-
tion between the accesses, either direct or indirect. To detect both races and uncontrolled critical
sections, the happens-before constraints are relaxed to only preserve the ordering between critical
sections when they have a RAW dependency. The vector clocks are used to encode the happens-
before relationships.

To be general, we describe our algorithms using release and acquire instead of individual syn-
chronization operations. While there exist many types of synchronization primitives, they can
fundamentally be considered as acquiring and releasing tokens. For example, mutual exclusion
requires for each thread to acquire a token (lock) before entering a critical section and releases
a token after the critical section. Similarly, the barrier synchronization can be realized by hav-
ing each thread release its token after reaching a barrier and wait for acquiring tokens from all
other threads before proceeding. For Race+UCS, however, the algorithm distinguishes two types
of synchronization primitives: mutex primitives that support critical sections, and ordering prim-
itives such as barriers (See Section 2.1). The algorithms also refer to synchronization tokens as
synchronization objects.

3.2 Detection of Conflicting Accesses

The first step in our detection algorithms is to identify a pair of conflicting memory accesses: two
accesses from different threads to one location with at least one being a write. The conflicting
accesses represent a pair, which can lead to a change in the value read from memory if re-ordered.
As an option, our algorithms can also check memory values before and after the conflicting write
to see if a re-ordering will change the value. We discuss the impact of checking memory values on
bug detection capability in the evaluation. However, for simplicity, this check is not shown in the
algorithm here.

Figure 3 shows the operations that need to be performed on each memory access in order

to detect conflicting accesses and provide information for re-order checks. The algorithm uses
read/write history tables to keep a thread ID (TID) and a timestamp for the most recent read and
write to each memory location. This information needs to be kept at the smallest granularity that
can be shared among threads; in theory, each byte. The algorithm can detect conflicting memory
accesses using the thread IDs and access types (read/write) of the previous and current accesses to
each location.

Upon detecting conflicting accesses, the algorithm calls the check_reorder () function
along with information on the two accesses, in order to check if they can be re-ordered under
the happens-before constraints. To aid this check, each thread maintains a local clock that incre-
ments on each synchronization operation, either acquire or release, within the thread. This clock
is recorded on each memory access as a timestamp to indicate when the previous access to each
location happened. This clock is one of the thread vector clocks (ThreadvClk [TID] [TID])
that we discuss in the following subsection.

Rather than being comprehensive, our algorithm only detects conflicts with the most recent
read and write to each memory locations. Traditional vector clocks typically keep track of the most
recent read and write from each thread to each location [6, 27, 23]. However, a recent study showed
that keeping one write per location instead of a vector of writes from each thread is sufficient to
provide a comprehensive coverage for data races [7]. We take this optimization approach even
further by keeping only one write and one read per location. In practice, we found that detecting
conflicts with the most recent read and write is sufficient to detect almost all concurrency bugs or
even injected races (see Section 5).

3.3 Checks for Memory Access Reordering

Once a conflicting memory access pair is detected, the algorithm checks if the accesses can be
re-ordered within the imposed happens-before constraints. For this purpose, our algorithms use
vector clocks [6]. For a parallel program with N threads, each thread maintains a vector clock
with N elements. ThreadVC1lk([i] [1] represents Thread i’s local clock that is incremented
on each synchronization operation within that thread. Conceptually, other elements in a vector
clock encode the ordering constraint between two threads. For example, ThreadVClk [1] []]
indicates the earliest that the current memory access from Thread i can be moved to in terms of
Thread j’s local time. If the vector clocks are properly maintained, one can check if the current
memory access from Thread i can be reordered before a previous access from Thread 7 simply
by comparing Thread i’s vector clock value ThreadvClk[i] [j] with the timestamp of the
previous access.

3.3.1 Race Detection (Race-Opt)

Conflicting accesses represent a data race if they can be re-ordered while maintaining the happens-
before relationships among all synchronization operations. In this case, maintaining vector clocks
is straightforward because every synchronization operation adds a re-ordering constraint in the
same way. Figure 4 shows the algorithm. To encode the ordering constraints from each synchro-
nization operation, the algorithm maintains a vector clock for each synchronization object (object
VC) in addition to thread vector clocks (thread VCs). On a release operation, the object VC is
updated with the vector clock for the thread that performs the release (take the later timestamp
for each element). The object VC represents the earliest that the following release operation can

10

detect_shared(TID, Addr, Type, TimeStamp)

Meta-data:

1.ThreadVClk [TID1] [TID2]: A vector clock per thread.
(N elements for a program with N threads).

2. 0bjVC1lk [SyncOb3j] [TID]:
A vector clock per synchronization object.

Functions:

all_update_acquire (TID, SyncObj)

1. For each element in the vector clock, ThreadVClk [TID] [i] =
MAX (ThreadVClk [TID] [i], ObjVClk[SyncOb3j][i]).

all_check._reorder (TID, PrevTID, PrevTimeStamp)
1.Check if the memory accesses can be re-orderd:
If ThreadVC1lk [TID] [PrevTID] < PrevTimeStamp,
report a data race.

Functions:

all_update_release (TID, SyncObj)

1.For each element in the vector clock, ObjVC1k [TID] [i] =
MAX (ThreadVClk [TID] [i], Ob3jVClk[SyncObij][i]).

Figure 4: An algorithm to determine if two memory accesses represent a data race.

detect_shared(TID, Addr, Type, TimeStamp)
Functions:
raw_update_release (TID, SyncObj)
1. If (type (SyncObj) == OrderSyncObj),
For each element in the vector clock,
OrderObjVClk [TID] [i] =MAX (ThreadVClk[TID] [i],
OrderObijVClk [SyncObj] [i]).
2. If (type (SyncObj) ==MutexSyncObj),
(a) MutexObjVClk [SyncObj] [TID] = ThreadVClk[TID].
(b) Remove SyncObj from CSList [TID].
(¢) If (CSList [TID] == NULL),
for each access pair in DetectionList [TID],
if ThreadVClk [TID] [PrevTID] < PrevTimeStamp
report a bug.

Meta-data:
1. ThreadvC1lk [TID1] [TID2]: A vector clock for each thread.
2. 0rderObjVClk [SyncObj] [TID]:

A vector clock for each ordering synchronization object.
3. MutexObjVC1lk [SyncObj] [TID1] [TID2]:

A set of vector clocks (one per thread)

for each mutex object.
4. CSList [TID]:

A list of critical section(s) that a thread is currently in.
5. DetectionList [TID]:

A list of potentially buggy memory access pairs.

Changes to
detect_shared(TID, Addr, Type, TimeStamp): raw_update_raw (RATID, WrTID, WrCSList)
1. Include CSList [TID] in read_table () 1. If (CSList [RATID] MWrCSList) % NULL),

and write_table();
(a) Store (TID, TimeStamp, CSList[TID])
in each memory access.
(b) Use PrevCSList from the table
when calling check_reorder ().
2. Call raw_update_raw () when a Read-After-Write is detected.
WrCSList is CSList fromthe write_table ().

for each element in (CSList [RATID] NWrCSList),
update the thread vector clock: ThreadvClk [TID] [i] =
MAX (ThreadVClk [RATID] [i],

MutexObjVClk [SyncObij] [WrTID] [i]).

raw_check_reorder (TID, PrevTIID, PrevTimeStamp, PrevCSList)
1. If (ThreadVClk [TID] [PrevTID] < PrevTimeStamp),
(a) If (CSList [TID] NPrevCSList # NULL)
Add an entry to DetectionList [TID].
(b) Otherwise, report a bug detection.

Functions:
raw_update_acquire (TID, SyncObj)
1. If (type (SyncObj) == OrderSyncObj),
for each i, update the vector clock: ThreadVClk [TID] [1] =
MAX (ThreadVClk [TID] [i], OrderObjVClk[SyncObjl[i]).
2. If (type (SyncObj) ==MutexSyncOb3j),
add SyncObjto CSList [TID].

Figure 5: An algorithm to determine if two memory accesses represent an uncontrolled critical
section.

happen in each thread’s local time. On an acquire operation, a thread VC is updated with the
corresponding object VC.

3.3.2 Race+UCS

Figure 5 shows how the vector clocks can be managed for the Race+UCS scheme. For the or-
dering synchronization, the algorithm is identical to Race-Opt because both enforce the same
happens-before constraints. However, for the mutex synchronization, the Race+UCS algorithm
is more complex because an ordering between two critical sections is maintained only when there

11

exists a read-after-write dependency. For this purpose, the algorithm adds additional structures to
selectively update object vector clocks, detect a RAW dependency between critical sections, and
delay a detection.

In the Race+UCS algorithm, a vector clock needs to be propagated from one thread to another
through a mutex object only for a subset of release-acquire pairs. In order to support such a
behavior, our algorithm keeps multiple vector clocks for each mutex object one from each thread,
(MutexObjVClk [SyncObj] [TID1] [TID2]). On a release operation, a thread updates its
own mutex object vector clock. In this way, a thread can inherit the correct vector clock from the
critical section with a RAW dependency even when it is not the most recent release operation for
the mutex object.

To detect a RAW dependency between two critical sections, the algorithm keeps track of which
critical sections that each thread is currently in (CSList [TID]) and was in for memory opera-
tions recorded in the read/write history tables. Upon detecting a RAW dependency between two
memory accesses, the lists allow the algorithm to check (in raw_update_raw ()) if the two ac-
cesses are both inside critical sections that are protected by the same mutex object. If so, the
thread vector clock is updated with the corresponding mutex vector clock. This dynamic approach
introduces delays in both propagating vector clocks and reporting a bug because the dependency
between critical sections is not known at the beginning of a critical section. Therefore, when a
potential bug is detected within a critical section, the bug is recorded in a list (DetectionList)
and the report is delayed till the end of the critical section when an updated thread vector clock is
available.

The computation complexity of the Race+UCS algorithm is comparable to that of Race-Opt
because the only major difference is in a constant overhead of accessing CSList. Our Pin-based
implementations also show comparable performance for both algorithms, and confirm this obser-
vation. The main overheads of Race+UCS compared to Race—Opt comes from the storage for
mutex object vector clocks. Race—-0pt requires Ny,uier X Nipread X Bis where Nyie, 1 the num-
ber of mutex objects, Nyxreqaq 1S the number of threads, and By, is the size of a timestamp. On the
other hand, Race+UCS requires Nputer X Ninread X Ninread X Bis, Which grows much faster with
the number of threads. However, we found that the storage overhead is reasonable under realistic
parameters. For example, even with 100 threads and 1,000 mutex objects, the storage requirement
is 20MB for 16-bit timestamps. We also believe that the algorithm can be further optimized as the
mutex vector clocks are very sparsely utilized.

4 Architecture Support

This section describes the hardware support for an efficient realization of the proposed run-time
detection schemes, enabling them to be applied to production systems.

4.1 Challenges

The main challenge in hardware support for concurrency bug detection lies in managing meta-data
efficiently without significantly sacrificing scalability or detection coverage. A large amount of
meta-data could result in large hardware structures or noticeable interference with regular program
execution. On the other hand, reducing the amount of meta-data may limit the maximum number
of threads that hardware can support or result in undetected bugs. In this context, traditional vector
clocks [27, 23] are particularly challenging to support in hardware because they require a vector

12

¢ Needed for Race+UCS Only. Keeps

C] Critical Section IDs for most recent
[Off-Chip Memory]

read and write.

l L3 lTagJ ‘ """) write of thread IDs, timestamps.

[Core 1 HChecker] [Core N Hchecker] Shared Location Detection: 1-bit shared tag for
L1/2/3 cache block, set on L1/2 cache coherence

downgrade event, propagate to L3.

Access History Buffer (AHB): Meta-data for

most recent read/write to a shared location.

Including ThreadIDs and timestamps.

AHB (Orange/Darker Block): Race+UCS only,

records up to 4 critical sections IDs for each access.

Vector Clock (Not Shown Here): Stored and

accesses through existing memory hierarchy.

A A

AHB

¢ Checker: Keeps active ThreadID and ThreadVClk,
[L33 and CSLIst for Race+UCS. On shared access from L1,
records access to AHB, identifies conflict accesses,
¢ check for possible re-order. Bookkeeping
[Off-Chip Memory] ThreadVClk and ObjVCIk on sync. operations.

Figure 6: A block diagram for the overall architecture. The dark blocks represent new additions for
concurrency bug detection; blue blocks are common for both Race-Opt and Race+UCS; orange
blocks represent additional space only for Race+UCS.

clock for each memory location, whose size increases linearly with the number of threads. Even if
we keep scalar timestamps for most memory locations as in our schemes, the two timestamps and
thread IDs per word (or byte) represent significant overheads (2.5x for 16-bit timestamps and 8-bit
thread IDs).

In order to manage the overheads, previous proposals for happens-before data race detection in
hardware store meta-data at a coarse granularity, often one or two for each cache block [23, 22].
Also, these designs integrate the meta-data into data caches, introducing additional storage for each
cache block. Unfortunately, such integrated designs trade-off flexibility and accuracy for lower
overheads. For example, ReEnact [23] can only support up to 4 threads and detect one conflicting
access for each cache block. CORD [22] uses scalar timestamps in place of vector clocks, but
can detect only about 70% of data races compared to vector clocks. Ideally, the hardware support
should have low overheads while allowing fine-grained bookkeeping to maintain high accuracy
and detection coverage.

4.2 Approach: Decoupled Bookkeeping

The architecture design in this section uses the intuition that most of bookkeeping for concurrency
bug detection is only necessary for “shared” memory locations. For example, our algorithms use
scalar timestamps and vector clocks only if conflicting accesses are detected. Here, we use the
term ‘“‘shared” to refer to locations with conflicting accesses. Moreover, such shared memory
locations are a small fraction of the entire memory space, especially for a relatively small window
where most conflicting accesses happen. In our study on PARSEC and SPLASH2 benchmarks,
less than 1% of memory locations have conflicting accesses that happen less than 100,000 memory
accesses apart. Therefore, keeping meta-data such as timestamps and vector clocks for all memory
locations, even just for on-chip caches, is extremely wasteful. Instead, in our design, we decouple
detection of conflicting accesses and the rest of bookkeeping so that most meta-data are stored only
for memory locations with conflicting accesses.

4.3 Architecture Design

Figure 6 shows the high-level block diagram for our architecture with support for concurrency bug
detection. In the figure, the blue blocks indicate the new hardware components that are common

13

for both Race-Opt and Race+UCS, and the orange blocks show additional bookkeeping only
for Race+UCS. The high-level architecture is virtually identical for both detection schemes ex-
cept Race+UCS maintains additional state (in AHB) and performs more complex operations (see
Section 3).

4.3.1 Extension for Shared Location Detection

Our architecture combines a simple cache tag and a coherence protocol to detect shared memory
locations that were recently accessed by multiple threads, with at least one write. The rest of the
bookkeeping is performed only for those locations that are marked as shared by this mechanism.
More specifically, we augment each block in data caches with a 1-bit tag, which indicates whether
the block is shared or not. This bit is cleared when a cache block is evicted or read from off-chip
memory. The shared bit is set when a cache coherence event indicates that multiple cores access
the same cache block with at least one write. For example, a request from a remote cache to have
an exclusive copy when there exists a local copy indicates the block is shared. This tag bit follows
the data on-chip; a dirty tag is written back to the lower level, and the tag is read with data on a
cache miss. Effectively, this mechanism detects memory blocks that are shared within a window,
while the block exists in multiple private (L1/L2) caches, and keeps this history while the block is
on-chip.

We believe that the 1-bit tag is sufficient under the assumption that each core runs one thread
with infrequent context switches or thread migrations. If not, the 1-bit tag may not detect locations
that are shared by multiple threads on one core or incorrectly identify a block as shared when a
single thread moves from one core to another. However, note that the inaccuracy can only lead to
false negatives, but not false positives. To be more accurate, a thread ID can be added to the 1-bit
tag in order to identify where each access comes from. The overhead will be still quite low even
with the thread ID as only one ID needs to be maintained for a cache block.

4.3.2 Checker Module

A checker module for each core maintains per-thread state and performs most of the bookkeeping
and checking operations. For the active thread on the core, the checker keeps a thread ID, a thread
vector clock, and a list of current critical sections for Race+UCS. On a memory access from the
core, the checker module uses the L1 data cache tag to determine if the access is to a “shared”
block. If so, the checker records the access into the access history buffer (AHB), identifies for
conflicting accesses, and checks if a re-ordering is possible. The checker module also coordinates
with software layers through new instructions. For Race-Opt, the architecture provides two
additional instructions to indicate a synchronization operation, one for acquire and the other for
release. For Race+UCS, the architecture adds four instructions, distinguishing ordering and mutex
synchronization operations. These instructions also convey the address of the synchronization
object vector clock(s).

4.3.3 Access History Buffer (AHB)

The access history buffer (AHB) records information on the most recent read and write to a shared
location that can be used to detect conflicting accesses and to check re-ordering. Essentially,

14

the AHB serves as the read and write history tables in our algorithms (see Section 3.2). On a
shared memory access, the checker module records a thread ID and a timestamp into the AHB. For
Race+UCS, the AHB also records up to four critical section IDs for each access.

As the AHB has a limited capacity, it works like a cache and only keeps the history of recently
shared memory accesses. However, there is no backup hierarchy for the AHB. If an entry is evicted
from an AHB, the information is simply thrown away. A miss to AHB creates a new entry. While
this design implies that we cannot detect conflicting accesses with a long distance in between,
our experimental results suggest that an AHB with 1024 entries, which correspond to 6-KB for
Race-Opt and 14-KB for Race+UCS assuming 8-bit thread IDs and 16-bit timestamps, are
sufficient for virtually all bugs tested.

We note that the AHB can store an access history per word because only accesses to shared
memory locations are recorded. On the other hand, traditional designs that combine meta-data
into the main cache often had to store information on a cache block granularity to keep overheads
acceptable.

4.3.4 Vector Clocks

Our algorithms use two types of vector clocks: thread vector clocks and synchronization object
vector clocks. For the thread vector clock, our architecture uses dedicated storage in each checker
module for an active thread on the core. We found that the thread vector clocks need to be close
to the checkers because they are used in each re-order check operation. The thread vector clock
needs to be treated as a part of thread state and managed by an operating system on a context
switch. On the other hand, vector clocks for synchronization objects are stored and accessed
through the existing memory hierarchy. For each synchronization object, software allocates space
for a vector clock in its memory space and passes the location using the new instructions that
indicate synchronization operations.

Hardware counters have a limited number of bits. As a result, the clock that each thread
uses to represent its local time may overflow after many synchronization events. Fortunately, our
experiments show that synchronization operations are rather infrequent and the thread clocks only
increment slowly. In fact, we did not see any overflow for PARSEC and SPLASH?2 benchmarks
even with 16-bit counters. Given that overflows are infrequent, our architecture handles them in a
relatively slow but straightforward fashion instead of adding complex hardware. Upon detecting
an overflow in its local clock, a checker raises an exception to an operating system, which in turn
interrupts other cores that run other threads from the same program. Then, the operating system
resets all timestamps and vector clocks to zero, and sets each thread’s local time to one to prevent
any false positives. In order to allow an operating system to clear vector clocks for synchronization
objects, an application allocates them in separate pages that are known to the operating system.

S Evaluation
5.1 Evaluation Setup

Our infrastructure is built on the Pin binary instrumentation framework [15]. To evaluate the de-
tection capabilities, our tool implements the bug detection algorithms by intercepting memory
accesses and pthread calls. To evaluate the architectural support, we implemented a typical mem-
ory hierarchy with bookkeeping structures in a Pin tool, and also added a timing model with a

15

Table 1: Baseline architecture parameters.
[Component [Parameters

Core 4 2-GHz in-order single-issue cores
Caches L1 I/D (private): 32KB/32KB 4-ways 3 cycles Latency
L2 (private): 256KB, 4-ways 15 cycles latency
L3 (shared): 8MB, 8-ways 40 cycles latency
Coh. protocol | MSI

DRAM 4GB 50ns Latency
Meta-data 8-bit thread/lock ID, 16-bit clock
AHB 1024-entries, 1-way, 6KB (Race-Opt) / 14KB (Race+UCS)

Table 2: Detection capabilities (A - Atomicity violation, O - Order violation, M - Multi-variable

bug) ' Race-VC | Race-Opt | Race-Opt | Race+UCS | Race+UCS
SW Only SW HW SW HW
Apache-A (Race) Yes Yes Yes Yes Yes
MySQL-A (Race) Yes Yes Yes Yes Yes
MySQL-A (Non-Race) No No No Yes Yes
KB1-A(MySQL) (Race) Yes Yes Yes Yes Yes
KB2-AM(MySQL) (Non-Race) No No No Yes Yes
KB3-A(Apache) (Race) Yes Yes Yes Yes Yes
KB4-A(MySQL) (Race) Yes Yes Yes Yes Yes
KB5-O(Mozilla) (Race) Yes Yes Yes Yes Yes
KB6-O(Mozilla) (Race) Yes Yes Yes Yes Yes
KB7-O(Mozilla) (Race) Yes Yes Yes Yes Yes
KB8-O(Mozilla) (Non-Race) No No No Yes* Yes*
KB9-O(MySQL) (Race) Yes Yes Yes Yes Yes
KB10-AM(Mozilla) (Race) Yes Yes Yes Yes Yes
KB11-AM(Mozilla) (Non-Race) No No No Yes Yes
KB12-AM(Mozilla) (Race) Yes Yes Yes Yes Yes
KB13-AM(Mozilla) (Race) Yes Yes Yes Yes Yes
KB14-A(MySQL) (Non-Race) No No No Yes* Yes*
KB15-A(MySQL) (Non-Race) No No No Yes Yes

processing core that runs 1 instruction per cycle, L1/L2/L.3 caches, and a memory interface.

Table 1 summarizes the baseline architecture parameters. We model a multi-core processor
with 4 cores, 64KB L1 and 256KB L2 private caches per core, and an 8MB shared L3 cache. We
also model MSI cache coherence protocol. For the additional bookkeeping, we model the access
history buffer (AHB) with an 8-bit thread ID and a 16-bit timestamp per access. For Race+UCS,
the AHB also includes up to four 8-bit lock IDs per access to record critical sections. Each entry
records one read and one write.

To evaluate the bug detection capability, we use two types of benchmarks, namely kernel
bugs (KB) and real programs. The kernel bugs are created based on real-world application bugs
(MySQL, Apache, and Mozilla) from previous studies [11, 10, 30]. The kernel bugs use 2 threads
to reproduce the original bugs. We also use three concurrency bugs from two large real-world
server applications (Apache and MySQL). We use 30 threads for Apache and 10 threads for
MySQL, respectively. For a further study on coverage, we also perform random race injections
to benchmarks from SPLASH2 [3] and PARSEC [1]. The race injection is performed by randomly
selecting a lock/unlock pair and ignoring the pair for the entire program execution. The SPLASH?2
and PARSEC benchmarks are run using 4 threads with the default input size for SPLASH?2 bench-
marks and simmedium input size for PARSEC.

5.2 Bug Detection Capability

We compare the bug detection capabilities of three schemes: Race-VC, Race—Opt, and Race+UCS.
Race-VC represents a traditional vector clock scheme [6, 27] where a vector clock is kept for each

16

Table 3: Race injection study results. 50 races were randomly injected into the benchmarks to

measure the detection capability. (P) - PARSEC, (S) - SPLASH2.
[| Race-VC [Race-Opt/Race+UCS (SW) [Race-Opt (HW) | Race+UCS (HW) |

Blackscholes (P) 50 50 50 50
Bodytrack (P) 50 50 50 50
Fluidanimate (P) 50 50 49 50
LU (S) 50 50 50 50
Ocean (S) 50 49 49 48
Radiosity (S) 50 50 50 50
Radix (S) 50 50 50 50
Swaptions (P) 50 50 50 50
Water-nquare (S) 50 50 49 50
Water-spacial (S) 50 50 50 50
Total 500/500 499/500 497/500 498/500

Table 4: The number of detections without a bug.

Race-VC (SW)

Race-Opt (SW)

Race-Opt (HW)

Race+UCS (SW)

Race+UCS(HW)

Apache

9 (2 benign)

9 (2 benign)

9 (2 benign)

9 (2 benign)

9 (2 benign)

Others

0

0

0

0

0

memory location. Race—Opt uses scalar timestamps for the most recent read/write instead.

5.2.1 Detection Coverage

Table 2 shows detection results for real-world bugs. The results show that both Race-Opt and
Race-VC detect all data-race bugs, indicating scalar timestamps do not significantly affect detec-
tion coverage. More importantly, Race—-UCS detects all bugs including 6 non-race bugs, showing
the notion of uncontrolled critical sections is indeed effective in practice. While none of these
schemes is explicitly designed for multi-variable bugs, the results show that at least some multi-
variable bugs can be detected by checking non-determinism in a single variable. Note Race+UCS
detects KB8 only when the bug manifests as discussed in Sections 2.4. Similarly, KB18 is de-
tected only on certain program runs. This is because the bug involves a write and a read in two
critical sections. Our scheme detects the bug when the write happens after the read, forming a
WAR dependency, but cannot detect it in the opposite case that forms a RAW dependency.

In theory, Race-VC may be able to detect data races that Race—Opt cannot. This is be-
cause the full vector clock scheme keeps the most recent read/write from each thread whereas
Race-Opt only keeps one read and one write to detect conflicting accesses. Also, hardware
implementations rely on caches to detect shared locations and the AHB to keep recent accesses.
Because both caches and the AHB have limited capacities, relevant information may be evicted,
causing potential false negatives. However, results for both real-world bugs in Table 2 and in-
jected races in Table 3 suggest that our proposed algorithms have a minimal impact on coverage
in practice when compared to Race-VC. Previous studies [10, 14] also observed that real-world
concurrency bugs typically manifest within a short window and involve two threads. This obser-
vation explains why keeping the most recent read and write rather than accesses from each thread
is enough in most cases. This also explains why the hardware implementations show comparable
detection coverage to the software implementations.

17

etections
BN WHU
©O o0oooo

i

-
(=]
5 2
I R o O . IR) . % o D
£ & & &'5& &"’o, S PO & £ & & & N & 0‘,\6 S & & &L &
z2 & & & [P z2 & & S S
& & & & & & & & ® & & & T
) Q 't'»& $’b L5 & &z &’b
N
[32KB/256KB/8MB D116KB/128KB/4MB [18KB/64KB/2MB 1024 Entries D512 Entries (1256 Entries
(a) Cache size study. (b) AHB size study.

Figure 7: The impact of caches and AHB sizes on detection capabilities of Race-Opt. We
injected 50 races to each configuration. We reduced L1, L2, L3 and AHB sizes to 1/2 and 1/4 of
the baseline configurations (32KB, 256KB, 8MB, 1024-entries).

5.2.2 False Positive Study

Ideally, a bug detection scheme should only report real bugs. As shown in Table 4, our detection
schemes, in both software and hardware implementations, report no false positive for SPLASH?2,
PARSEC, and MySQL without a bug. More importantly, Race+UCS has the exact same false
positives as race detectors, Race—-VC and Race-Opt, showing that uncontrolled critical sections
do not introduce new false positives.

For Apache, our schemes detected 7 intended data races that change outputs and 2 benign
races that do not impact outputs. Programmers may introduce an intended race in the program if
the race does not affect the correctness. For example, many of the intended races in Apache are
either introduced by accesses to the time logging variables or deadlock watchdog counters. The
code comments indicate that programmers chose to allow errors in logs for better performance.
The watchdog counters count the number of iterations to prevent deadlocks, and do not need to be
accurate.

Two of the nine races in Apache are benign and do not affect the program output. Those two
races happen during an initialization, where multiple threads initialize the same variables to the
same value. The two benign races will not be detected if the memory values are checked.

5.2.3 Cache and AHB Size Analysis

The hardware-based scheme relies on caches and the AHB for bookkeeping. Therefore, the cache
and AHB sizes directly affect the detection capability. The race injection study in Figure 7(a)
shows the impact of reducing cache sizes on the detection coverage. Here, the L1, L2, and L3
caches are reduced to 1/2 and 1/4 of the baseline while keeping the AHB at the baseline size. As
expected, the detection rate decreases as the cache sizes decrease. We also varied individual cache
sizes (not shown) and found that both L2 and L3 cache sizes have comparable impacts. Similarly,
Figure 7(b) shows the impact of reducing the AHB size. The coverage decreases as the AHB size
decreases because smaller AHBs can keep history for less memory locations. The exact impact
of reduced cache and AHB sizes, however, depends on application characteristics. For example,
memory intensive benchmarks such as Fluidanimate are more sensitive than others. Overall,
the experiments indicate that our scheme needs a private (L2) cache of 128-KB, the last level cache
(L3) of 4-MB, and the AHB with 512 entries in order to provide good coverage (90% detection

18

96.0%
>

101.09 go.os%
Py & 0.06%
- <
98.0% 3 0.04%
97.0% S 0.02% [I m
O 0.00% — e B o | o T I
e""\

o o .
o\z S S & & @ B

Normalized Execution Ti

-
. . S K] g &P & o & & & &
& q,o\ S LS S 5 &8s T T L F LS
F & & < & & & £ & & & & & & C
g o & 5 & N & 8
& < »
BERace-Opt O Race+UCS B Race-Opt O Race+UCS
(a) Performance overhead normalized to baseline (b) Additional VC accesses with respect to the data ac-

CEsses

Figure 8: Hardware performance study shows negligible overhead due to small number of addi-
tional vector clock (VC) accesses with respect to the data accesses. Numbers are normalized to
baseline (i.e. no detection scheme) results.

rate).
5.3 Performance Overheads

Currently, both software implementations based on Race—Opt and Race+UCS incur 10-20X per-
formance overhead compared to the native execution. The overhead includes the standard overhead
from Pin. The current software implementations are not optimized, and we expect the overheads
can be lower.

Figure 8(a) show the normalized execution time for the hardware-based detection schemes.
The performance overheads are negligible on average. Even in the worst case, the overhead is
1.0% for Fluidanimate. Because the architecture mostly uses dedicated on-chip structures
such as 1-bit cache tags and the AHB for bookkeeping, the only major source of performance
overhead comes from accessing vector clocks for synchronization objects through the normal cache
hierarchy. As shown in Figure 8(b), however, the number of vector clock accesses are negligible for
both schemes when compared to the number of regular data accesses. For Race—-0Opt, the vector
clocks only introduce 0.08% more accesses for Fluidanimate in the worst case, and 0.003%
more on average. Hence, the overall performance impact due to additional vector clock accesses
is negligible. While not shown here due to space constraints, the average L.1 cache miss rate only
increases 0.03% compared to the baseline rate for both detection schemes. In some cases, we
found that the vector clock accesses may improve cache performance by changing access patterns.
In Swaptions the L1 miss-rate is reduced by 0.1% with vector clock accesses.

In addition to vector clock accesses, counter overflows may introduce performance overheads
by requiring timestamps and vector clocks to reset. However, we have never encountered any
overflow during experiments. In the worst case in Fluidanimate, we found the maximum
timestamp value of 47,832 after 287,748,471 memory accesses before the benchmark finishes.
In all other benchmarks, the timestamp values never exceed 10,000 after the entire execution.
Hence, we believe that the possible performance overhead introduced by timestamp overflows is
negligible.

19

6 Related Work

6.0.1 Data Race Detection

At a high-level, data race detection techniques can be categorized into static and dynamic ap-
proaches. Static race detection schemes such as RacerX [5] use static analysis to detect possible
data races. However, static approaches are generally conservative without run-time information,
and usually require source code.

Dynamic data race detection techniques fall into two main classes, namely lockset based and
happens-before relation based. The lockset approach such as Eraser [25] checks whether each
shared variable is protected by at least one lock during the execution. The happens-before approach
checks whether two memory accesses are explicitly synchronized [8]. There are many previous
proposals that fall into this category, including RecPlay [24], Light64 [18], ReEnact [23], CORD
[22], FastTrack [7] and others. In general, the happens-before approaches are more accurate than
the lockset approaches but often have higher overheads. Researchers have also investigated hybrid
approaches in order to reduce the overhead of happens-before algorithms while maintaining a low
false positive rate [19, 4, 21].

The proposed bug detection techniques can be considered as an extension of the happens-before
approach to detect bugs at run-time. However, unlike any previous data race detection schemes,
we introduce the new notion of uncontrolled critical sections, which enables us to detect bugs
beyond traditional data races. Also, our hardware architecture shows that the happens-before race
detection approach as well as Race+UCS can be realized in hardware with minimal performance
overheads and with minimal impact on coverage.

6.0.2 Concurrency Bug Detection (Beyond Data Races)

Recently, there have been significant efforts to detect concurrency bugs using symptoms beyond
data races. One popular approach is to detect and/or tolerate bugs based on common program
behaviors. For example, AVIO [11] and SVD [29] approximate intended atomic regions using
common behaviors, Atom-Aid [14] tries to dynamically avoid atomicity violation bugs, MUVI [9]
and ColorSafe [13] target to detect concurrency bugs that involve multiple variables, and Bugaboo
[12] detect anomalies in communication graphs. Alternatively, researchers have also found that
concurrency bugs can be identified from their consequences such as memory errors [32] or other
failure patterns [31]. Traditionally, a program is often tested by running with many possible inter-
leaving patterns and checking results [16, 20, 2]. This approach can detect any concurrency bug if
a buggy interleaving is tried, yet can only test one case at a time.

This work presents a new approach to detect non-race bugs by extending the intuition behind
data races to uncontrolled critical sections. This approach can be applied to programs without
learning application-specific or bug-specific behaviors, and can often identify potential bugs before
they happen at run-time. However, this technique is still empirical and there is no guarantee on
bug detection coverage. In this sense, the proposed scheme complements an existing body of work
in non-race bug detection.

20

6.0.3 Hardware-Based Race Detection

While many concurrency bug detection techniques can be enhanced with architecture support, this
work is most closely related to happens-before race detection. In this context, ReEnact [23] pro-
vides hardware support for logical vector clocks [6] for cache lines. CORD [22] avoids the over-
heads of vector clocks by keeping four scalar timestamps per cache line, at the expense of smaller
coverage. Both of these approaches integrated meta-data into each cache line, paying overheads
on every cache line. Our work shows that decoupling of detecting shared memory locations and
the rest of the bookkeeping can significantly reduce hardware and performance overheads with
minimal impact on coverage. We also show that a combination of scalar timestamps and vector
clocks help enable efficient implementations without sacrificing detection capabilities.

As an alternative to the happens-before approach, researchers have also presented simple hard-
ware support for race detection relying on other heuristics. For example, HARD [33] uses locksets
and SigRace [17] uses hash signatures from Bloom filters to detect possible data races. These ap-
proaches enable reasonable race detection capability with minimal hardware additions. However,
generally they trade-off accuracy and coverage for the simplicity. In this work, we showed that
accurate happens-before approaches can also be realized with relatively simple hardware support.

7 Conclusion

This paper introduces the notion of uncontrolled critical sections, which captures improperly coor-
dinated critical sections, and presents a general bug detection approach that covers both data races
and non-race bugs. This new approach can be realized by extending traditional happens-before
race detection algorithms. Experimental results show that a broad range of concurrency bugs can
be detected in this fashion without introducing false positives. In addition to the algorithms, we
also show a decoupled architecture design can enable the happens-before detection schemes to
be realized with minimal overheads and without sacrificing detection coverage, thus providing an
attractive way to detect concurrency bugs.

21

References

[1] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,
January 2011.

[2] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Nagarakatte. A
randomized scheduler with probabilistic guarantees of finding bugs. In Proceedings of the
15" International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 167-178, 2010.

[3] CAPSL. The modified SPLASH-2. http://www.capsl.udel.edu/splash/, July
2007.

[4] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race and transaction-aware
java runtime. In Proceedings of the 2007 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 245-255, 2007.

[5] Dawson Engler and Ken Ashcraft. Racerx: effective, static detection of race conditions and
deadlocks. In Proceedings of the 19" ACM Symposium on Operating Systems Principles,
pages 237-252, 2003.

[6] Colin Fidge. Logical time in distributed computing systems. [IEEE Computer, 24:28-33,
August 1991.

[7] Cormac Flanagan and Stephen N. Freund. Fasttrack: efficient and precise dynamic race de-
tection. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 121-133, 20009.

[8] Leslie Lamport. Ti clocks, and the ordering of events in a distributed system. Commun. ACM,
21:558-565, July 1978.

[9] Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhenmin Li, Raluca A.
Popa, and Yuanyuan Zhou. Muvi: automatically inferring multi-variable access correlations
and detecting related semantic and concurrency bugs. In Proceedings of 215* ACM SIGOPS
Symposium on Operating Systems Principles, pages 103-116, 2007.

[10] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a com-
prehensive study on real world concurrency bug characteristics. In Proceedings of the 13"
International Conference on Architectural Support for Programming Languages and Oper-
ating Systems, pages 329-339, 2008.

[11] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. Avio: detecting atomicity violations
via access interleaving invariants. In Proceedings of the 12" International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 37-48,
2006.

[12] Brandon Lucia and Luis Ceze. Finding concurrency bugs with context-aware communication
graphs. In Proceedings of the 42" Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 553-563, 2009.

22

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Brandon Lucia, Luis Ceze, and Karin Strauss. Colorsafe: architectural support for debugging
and dynamically avoiding multi-variable atomicity violations. In Proceedings of the 37"
Annual International Symposium on Computer Architecture, pages 222-233, 2010.

Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. Atom-aid: Detecting and
surviving atomicity violations. In Proceedings of the 35" Annual International Symposium
on Computer Architecture, pages 277-288, 2008.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In Proceedings of the 2005 Conference on
Programming Language Design and Implementation International (PLDI), June 2005.

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Piramanayagam Arumuga
Nainar, and Iulian Neamtiu. Finding and reproducing heisenbugs in concurrent programs. In
Proceedings of the 8" USENIX Conference on Operating Systems Design and Implementa-
tion, pages 267-280, 2008.

Abdullah Muzahid, Dario Sudrez, Shanxiang Qi, and Josep Torrellas. Sigrace: signature-
based data race detection. In Proceedings of the 36" Annual International Symposium on
Computer Architecture, pages 337-348, 2009.

Adrian Nistor, Darko Marinov, and Josep Torrellas. Light64: lightweight hardware support
for data race detection during systematic testing of parallel programs. In Proceedings of
the 42" Annual IEEE/ACM International Symposium on Microarchitecture, pages 541-552,
2009.

Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection. In Proceedings
of the 9" ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 167-178, 2003.

Soyeon Park, Shan Lu, and Yuanyuan Zhou. Ctrigger: exposing atomicity violation bugs
from their hiding places. In Proceeding of the 14" International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 25-36, 2009.

Eli Pozniansky and Assaf Schuster. Efficient on-the-fly data race detection in multithreaded
c++ programs. In Proceedings of the 9" ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 179—-190, 2003.

Milos Prvulovic. CORD: Cost-effective (and nearly overhead-free) order-recording and data
race detection. In Proceedings of the International Symposium on High-Performance Com-
puter Architecture, February 2006.

Milos Prvulovic and Josep Torrellas. ReEnact: Using thread-level speculation mechanisms
to debug data races in multithreaded codes. In Proceedings of the 30" Annual International
Symposium on Computer Architecture, pages 110-121, 2003.

Michiel Ronsse and Koen De Bosschere. Recplay: a fully integrated practical record/replay
system. ACM Transactions on Computer Systems, 17:133—152, May 1999.

23

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.
Eraser: a dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems, 15:391-411, November 1997.

Chen Tian, Vijay Nagarajan, Rajiv Gupta, and Sriraman Tallam. Dynamic recognition of
synchronization operations for improved data race detection. In Proceedings of the 2008
International Symposium on Software Testing and Analysis, pages 143—154, 2008.

Céline Valot. Characterizing the accuracy of distributed timestamps. In Proceedings of the
1993 ACM/ONR Workshop on Parallel and Distributed Debugging, pages 43-52, 1993.

Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and Zhigiang Ma. Ad hoc syn-
chronization considered harmful. In Proceedings of the 9" USENIX Conference on Operating
Systems Design and Implementation, pages 1-8, 2010.

Min Xu, Rastislav Bodik, and Mark D. Hill. A serializability violation detector for shared-
memory server programs. In Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 1-14, 2005.

Jie Yu and Satish Narayanasamy. A case for an interleaving constrained shared-memory

multi-processor. In Proceedings of the 36" annual International Symposium on Computer
Architecture, pages 325-336, 2009.

Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guoliang Jin, Shan Lu, and
Thomas Reps. Conseq: detecting concurrency bugs through sequential errors. In Proceedings
of the 16" International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 251-264, 2011.

Wei Zhang, Chong Sun, and Shan Lu. Conmem: detecting severe concurrency bugs through
an effect-oriented approach. In Proceedings of the 15" Conference on Architectural Support
for Programming Languages and Operating Systems, pages 179-192, 2010.

Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. Hard: Hardware-assisted lockset-based
race detection. In Proceedings of the 2007 IEEE 13th International Symposium on High
Performance Computer Architecture, pages 121-132, 2007.

24

	FA9550-09-1-0131%20SF298[1].pdf
	FA9550-09-1-0131%20Final%20Report[1].pdf

